Sumbergambar :soal-soal-kelas.blogspot.com. venn matematika kelas. Contoh Soal Persamaan Linear Satu Variabel Bentuk Pecahan - Berbagai Contoh. Sumber gambar :berbagaicontoh.com. variabel persamaan linear seputarpengetahuan pecahan tiga. Soal Pengurangan Pengurangan Bersusun Panjang Kelas 2 Sd - Unduh File Guru. Sumber gambar :unduhfile

Promo Shopping Day [ Lihat 7 Hari Lagi ] Ok Pada kesempatan kali ini, kami akan membahas contoh soal cerita persamaan linear satu variabel PLSV dimana materi ini adalah materi matematika siswa SMP/sederajat. Akan tetapi menjadi materi uji pada olimpiade matematika tingkat SD/sederajat. Sekedar mengingatkan saja bahwa bentuk umum PLSV adalah ax+b=0 dimana a adalah koefisien variabel x dan b bilangan konstan. Contohnya, 2x+5=0, 3x=9, dan lain-lain. Berbicara tentang persamaan berarti berbicara bagaimana menyelesaikan persamaan tersebut. Menyelesaikan PLSV dengan bentuk umum ax+b=0 adalah mencari nilai dari x sehingga pernyataan tersebut bernilai benar. Misalnya, $2x-1=3$ adalah persamaan linear satu variabel, yang tentunya masih dalam kalimat terbuka, bisa bernilai benar atau salah tergantung substitusi atau masukan nilai x ke persamaan tersebut. Jika kita memasukan nilai x=1 maka $21-1=2-1=1$ tidak sama dengan 3 sehingga x=1 bukan merupakan solusi atau penyelesaian dari $2x-1=3$. Langsung ke inti pembahasan, contoh soal cerita di bawah ini diambil dari soal olimpiade matematika SD tingkat provinsi Jawa Barat, 2013. "Harga seekor ayam Rp dan harga seekor kambing Rp Pak Embe ingin membeli dua kambing dengan cara menjual ayamnya. Berapa banyak ayam yang harus dijualnya?" Jawabannya sebagai berikut. Misalnya banyak ayam yang harus dijual adalah a ekor. Artinya, terbentuk persamaan linear satu variabel sebagai berikut. $25000Γ—a=2Γ—650000$ Kita selesaikan PLSV tersebut dengan cara yang biasa kita lakukan, yaitu $\begin{align} a &= \frac{2Γ—650000}{25000} \\ &= \frac{1300000}{25000} \\ &=52 \end{align}$ Jadi, agar dapat membeli 2 kambing, pak Embe harus menjual 52 ekor ayam. Demikianlah postingan singkat kami yang berjudul Contoh Soal Cerita Persamaan Linear Satu Variabel PLSV. Semoga bermanfaat, terima kasih atas kunjungannya!

MenyelesaikanSoal Cerita Persamaan dan Pertidaksamaan Linear Satu Variabel. JPMI - Jurnal Pembelajaran Matematika Inovatif, 3 (1), 11-18. PENDAHULUAN Pada dasarnya pendidikan merupakan suatu alat untuk meningkatkan taraf hidup serta kualitas sumber daya manusia (SDM). Dari beberapa mata pelajaran yang di tempuh oleh siswa di Kalian bisa pelajari pembahasan soal ini di youtube chanel ajar hitung.. kalian bisa langsung klik video di bawah ini 1. Berikut ini merupakan kalimat tertutup, kecuali...a. Ibu kota Singapura adalah Kuala Lumpurb. Delapan dikurangi tiga sama dengan limac. Bandung adalah bagian dari Jawa Baratd. Presiden pertama Amerika bernama m. Pembahasan mari kita bahas opsi di atas satu persatuKalimat A merupakan kalimat tertutup yang bernilai salah, seharusnya ibu kota Aingapura adalah B adalah kalimat tertutup yang bernilai benarKalimat C adalah kalimat tertutup yang bernilai benarKalimat D adalah kalimat terbuka karena tidak dapat ditentukan nilai kebenarannya. Jadi, jawaban yang tepat adalah D. 2. Kalimat terbuka Angka pertama suatu bilangan cacah adalah m. Agar kalimat tersebut bernilai benar, nilai m adalah... a. 0b. 1c. 2d. -1 Pembahasan bilangan cacah adalah bilangan yang dimulai dari no 0. Jadi, jawaban yang benar adalah A. 3. Diketahui persamaan -2x – 9 = 13. Nilai x yang memenuhi adalah...a. -4b. -11c. 11d. 22 Pembahasan untuk menyelesaikan persamaan tersebut, tinggal pindahkan ruas saja. Ingat setiap pindah ruas, maka tanda + dan - pasti berubah. -2x – 9 = 13 -2x = 13 + 9 catatan 9 menjadi positif karena berpindah ruas -2x = 22 x = 22 -2 x = -11 jadi jawaban yang tepat adalah B. 4. Jika x + 6 = 4x – 6, nilai x – 4 adalah...a. 0b. 1c. 2d. 3 Pembahasan untuk menyelesaikan persamaan tersebut, tinggal pindahkan ruas saja. Ingat setiap pindah ruas, maka tanda + dan - pasti berubah. x + 6 = 4x – 6 x – 4x = -6 – 6 -3x = -12 x = -12 -3 x = 4 maka nilai x – 4 = 4 – 4 = 0 jawaban yang tepat adalah A. 5. Jika x adalah penyelesaian dari persamaan -3x + 5 = x – 7, nilai x + 8 adalah...a. 3b. 5c. 11d. 14 Pembahasan -3x + 5 = x – 7 -3x – x = -7 – 5 -4x = -12 x = -12 -4 x = 3 Maka nilai x + 3 = 3 + 8 = 11 Jawaban yang tepat C. 6. Diketahui persamaan 9x + 5 = 2x - 9. Nilai x + 11 adalah...a. -14b. 9c. 12d. 13 Pembahasan 9x + 5 = 2x – 9 9x – 2x = -9 – 5 7x = -14 x = -14 7 x = -2 maka nilai x + 11 = -2 + 11 = 9 jawaban yang tepat adalah B. 7. Nilai x yang memenuhi persamaan adalah...a. -6b. -4c. 4d. 6 Pembahasan kalikan kedua ruas dengan 12, karena KPK dari 4 dan 3 adalah 12 3 x – 10 = 8x – 60 3x – 30 = 8x – 60 3x – 8x = -60 + 30 -5x = -30 x = -30 -5 x = 6 Jawaban yang tepat adalah D. 8. Nilai x yang memenuhi -2x + 4 ≀ -4, dengan x bilangan asli adalah...a. 1b. 2c. 3d. 4 Pembahasan cara pengerjaan persamaan dan pertidaksamaan hampir sama. -2x + 4 ≀ -4 -2x ≀ -4 – 4 -2x ≀ -8 x β‰₯ -8 -2 tanda pertidaksamaan ≀ berubah menjadi β‰₯ karena ruas kanan dibagi dengan bilangan negatif. x β‰₯ 4 x haruslah bilangan yang lebih dari atau sama dengan 4. Jadi jawaban yang tepat adalah D. 9. Himpunan penyelesaian dari pertidaksamaan x – 3 ≀ 5 – 3x, dengan x bilangan bulat adalah...a. {x∣x ≀1,x bilangan bulat}b. {x∣x ≀2,x bilangan bulat}c. {x∣x β‰₯1,x bilangan bulat}d. {x∣x β‰₯2,x bilangan bulat} Pembahasan x – 3 ≀ 5 – 3x x + 3x ≀ 5 + 3 4x ≀ 8 x ≀ 8 4 x ≀ 2 jawaban yang tepat adalah B. 10. Himpunan penyelesaian dari pertidaksamaan x – 1 β‰₯ 2x – 5, dengan x bilangan bulat adalah...a. {x∣x ≀-4,x bilangan bulat}b. {x∣x ≀4,x bilangan bulat}c. {x∣x ≀6,x bilangan bulat}d. {x∣x ≀-6,x bilangan bulat} Pembahasan x – 1 β‰₯ 2x – 5 x – 2x β‰₯ -5 + 1 -x β‰₯ -4 x ≀ -4 -1 tanda β‰₯ berubah menjadi ≀ karena ruas kanan dibagi bilangan negatif x ≀ 4 jadi, jawaban yang tepat adalah B. 11. Himpunan penyelesaian dari pertidaksamaan x + 3 β‰₯ 5x – 1, dengan x bilangan bulat adalah...a. {x∣x β‰₯1,x bilangan bulat}b. {x∣x ≀1,x bilangan bulat}c. {x∣x β‰₯-1,x bilangan bulat}d. {x∣x ≀-1,x bilangan bulat} Pembahasan x + 3 β‰₯ 5x – 1 x – 5x β‰₯ -1 – 3 -4x β‰₯ -4 x ≀ -4 -4 tanda β‰₯ berubah menjadi ≀ karena ruas kanan dibagi bilangan negatif x ≀ 1 Jadi, jawaban yang tepat adalah B. 12. Himpunan penyelesaian dari -7p + 8 -30 -10 tanda karena ruas kanan dibagi dengan bilangan negatif P > 3 Himpunan bilangan yang lebih dari 3 adalah = {4,5,6,…} Jadi, jawaban yang tepat adalah D. 13. Sebuah persegi panjang mempunyai panjang 5 cm lebih panjang dari lebarnya. Jumlah panjang dan lebarnya adalah 19 cm. Jika lebar dinyatakan dengan m, persamaan linear yang tepat dari cerita tersebut adalah...a. m + 5 = 19b. 2m + 5 = 19c. m + 10 = 19d. 2m + 10 = 19 Pembahasan dari soal diketahui Lebar = m Panjang = 5 + m Jumlah panjang dan lebar = 19 Panjang + lebar = 19 5 + m + m = 19 5 + 2m = 19 Jadi, jawaban yang tepat adalah B. 14. Diana senang membuat prakarya origami. Setiap harinya ia membuat origami sama banyak. Setelah 12 hari, jumlah karya origaminya adalah 108 buah. Banyak karya origami yang Diana buat setiap harinya adalah...a. 9 buahb. 10 buahc. 11 buahd. 12 buah Pembahasan dari soal diketahui Banyak origami sehari = x Banyak origami 12 hari = 108 Persamaan matematika dari bentuk di atas adalah 12x = 108 12x = 108 x = 108 12 x = 9 jadi, jawaban yang tepat adalah A. 15. Jumlah dua bilangan asli berurutan adalah 119. Salah satu bilangan asli tersebut adalah...a. 63b. 62c. 61d. 60 Pembahasan Misal bilangan asli pertama = x Bilangan asli kedua = x + 1 Jumlah dua bilangan itu = 119 x + x + 1 = 119 2x + 1 = 119 2x = 119 – 1 2x = 118 x = 118 2 x = 59 bilangan kedua = 59 + 1 = 60 jadi, jawaban yang tepat adalah D. 16. Harga beras A Rp750,00 lebih mahal dari harga beras B untuk setiap liternya. Jumlah harga beras A dan beras B per liter adalah Harga beras A per liter adalah...a. Pembahasandari soal diketahui Harga beras B = x Harga beras A = 750 + x Jumlah harga beras A dan B = Harga beras A + harga beras B = 750 + x + x = 750 + 2x = 2x = – 750 2x = x = 2 x = harga beras B = harga beras A = + 750 = jawaban yang tepat adalah C. 17. Sebuah persegi panjang mempunyai ukuran panjang 3x – 5 cm dan lebar x + 3 cm. Jika keliling persegi panjang 52 cm, panjang dan lebar persegi panjang berturut-turut adalah... a. 19 cmdan 7 cmb. 18 cm dan 8 cmc. 17 cm dan 9 cmd. 16 cm dan 10 cm Pembahasan dari soal diketahui Panjang = 3x – 5 Lebar = x + 3 Keliling = 52 Keliling = 2 panjang + lebar 2 3x -5 + x + 3 = 52 24x – 2 = 52 8x – 4 = 52 8x = 52 + 4 8x = 56 x = 56 8 x = 7 panjang = 3x – 5 = 3 7 – 5 = 21 – 5 = 16 cm lebar = x + 3 = 7 + 3 = 10 cm jadi, jawaban yang tepat adalah D. 18. Diketahui keliling persegi panjang 94 cm dengan ukuran panjang 5x + 2 cm dan lebar 2x + 3 cm. Panjang dan lebar persegi panjang sebenarnya berturut-turut adalah...a. 24 cm dan 23 cmb. 25 cm dan 22 cmc. 32 cm dan 15 cmd. 36 cm dan 11 cm Pembahasan dari soal diketahui Keliling = 94 cm Panjang = 5x + 2 cm Lebar = 2x + 3 cm Keliling = 2 panjang + lebar 2 5x + 2 + 2x + 3 = 94 27x + 5 = 94 14x + 10 = 94 14x = 94 – 10 14x = 84 x = 84 14 x = 6 Panjang = 5x + 2 = 56 + 2 = 32 cm Lebar = 2x + 3 = 26 + 3 = 15 cm Jawaban yang tepat adalah C. 19. Semua siswa kelas VII berusia paling tua 16 tahun. Jika u menyatakan usia siswa kelas VII, model matematika yang tepat adalah...a. u 16 pembahasan semua siswa paling tua berusia 16 tahun, artinya semuas siswa usianya kurang atau sama dengan 16 tahun. Kurang atau sama dengan 16 tahun dapat dituliskan ≀ 16 Jadi, u ≀ 16. Jawaban yang tepat adalah C. 20. Rama adalah siswa kelas IX di sebuah sekolah. Ia mendapat tugas untuk membuat kerangka kubus dari kawat. Ia memiliki kawat sepanjang 80 cm. Kemungkinan panjang rusuk dari kubus yang dapat dibuat adalah, kecuali...a. 7 cmb. 6,5 cmc. 6 cmd. 5,5 cm Pembahasan dari soal diketahui panjang kawat = 80 cm panjang rusuk kubus = x untuk membuat kubus yang memiliki rusuk 12 kawatnya tidak boleh lebih dari 80 cm atau harus kurang atau sama dengan 80 cm. Kalimat matematikanya menjadi 12x ≀ 80 x ≀ 80 12 x ≀ 6,5 Jadi panjang kawat tidak boleh lebih dari 6,5. Jadi panjang rusuk tidak boleh 7 cm. Jawaban yang tepat adalah A. 21. Himpunan penyelesaian dari X2– 25 = 0 adalah...a. {0,5}b. {-5,5}c. {5,10}d. {5,25} Pembahasan rumus untuk soal tersebut adalah x + 5 x – 5 = 0 x + 5 = 0 dan x – 5 = 0 x = -5 x = 5 Jadi, jawaban yang tepat adalah B. 22. Himpunan penyelesaian dari x2 – 2x – 35 = 0 adalah...a. {5,7}b. {5,-7}c. {-5,-7}d. {-5,7} Pembahasanx2 – 2x – 35 = 0 x – 7 x + 5 = 0 x – 7 = 0 dan x + 5 = 0 x = 7 x = -5 Jadi, jawaban yang tepat adalah D. 23. Persamaan kuadrat yang memiliki akar-akar -3 dan 7 adalah... pembahasan persamaan kuadrat dengan x1 dan x2 diketahui memiliki rumus jadi, jawaban yang tepat adalah D. 24. Sebidang tanah berbentuk persegi panjang memiliki luas 108 m2. Jika panjangnya 3 m lebih panjang dari lebarnya, lebar tanah tersebut adalah...a. 8 mb. 9 mc. 10 md. 11 m Pembahasan dari soal diketahui Lebar = x Panjang = 3 + x Luas = 108 Luas = panjang x lebar x 3 + x = 108 3x + x2 = 108 x2 + 3x – 108 = 0 x + 12 x – 9 = 0 X + 12 = 0 dan x – 9 = 0 x = -12 x = 9 lebar tidak mungkin minus -, jadi lebar = 9 cm. Jawaban yang tepat adalah B. 25. Jika kedua akar persamaan bernilai negatif, nilai p adalah... Pembahasan , maka Persamaan kuadrat memiliki akar-akar yang bernilai negatif apabila memenuhi syarat Irisan dari ketiga syarat di atas adalah p < 0 Jawaban yang tepat adalah A. Persamaanlinear satu variabel adalah kalimat terbuka yang dihubungkan tanda sama dengan (=) dan hanya mempunyai satu variabel berpangkat 1. Dalam berbagai soal persamaan linear, otakers nantinya akan diperintahkan untuk mencari Himpunan Penyelesaian baik dalam bentuk soal cerita atau langsung dalam model matematika.
Oleh Andri Saputra, Guru SMPN 12 Pekanbaru, Riau - Tahukah kamu berapa populasi gajah Sumatera di Indonesia sekarang? Populasi gajah di Indonesia sangat mengkhawatirkan. Gajah Sumatera hampir terancam punah. Jumlah populasi gajah Sumatera tahun 2017 hanya sekitar ekor. Populasi gajah Sumatera tersebut terjadi gajah jantan dan gajah betina. Jika diketahui jumlah populasi gajah sementara betina sama dengan banyaknya populasi gajah Sumatera jantan ditambah 380 ekor. Dapatkah kamu menentukan jumlah populasi gajah Sumatera jantan di Indonesia. Jika kita perhatikan permasalahan di atas jumlah populasi gajah merupakan contoh penerapan persamaan linear satu menentukan jumlah populasi gajah Sumatera jantan di Indonesia terlebih dahulu misalkan dengan variabel x. Baca juga Contoh Soal Pertidaksamaan Nilai Mutlak Linear Satu Variabel Dengan demikian posisi gajah Sumatera betina di Indonesia adalah x + 380 jadi kalimat matematika yang diperoleh berdasarkan persamaan tersebut adalah x + x + 380 = 1328. Kalimat matematika tersebut merupakan contoh persamaan linear satu variabel. Kemudian diselesaikan sehingga diperoleh X = 474 ekor hal ini berarti jumlah populasi gajah Sumatera jantan adalah 474 ekor dan populasi gajah betina adalah 854 ekor. Meyelesaikan persamaan linear satu variabel Persamaan linear satu varabel adalah persamaan yang memuat satu variabel dengan pangkat satu. Bentuk umum persamaan linear satu variabel adalah ax+b=0, dengan a≠0. Contoh x+8=9. Dalam menyelesaikan sistem persamaan linear satu variabel, usahakan nilai suku yang mengandung variabel di ruas kanan dihilangkan terlebih dahulu.
Soaltentang persamaan linier satu varibel banyak ditampilkan dalam bentuk soal cerita, dalam hal ini diperlukan kemampuan untuk mengubah dari satu cerita menjadi satu bentuk persamaan. Soal No. 1 Diberikan persamaan satu variabel berikut ini: 10x + 12 = 3x + 33 Tentukan nilai dari 2x + 5. Pembahasan Satukan variabel x dengan x dan angka dengan angka. Gunakan perpindahan ruas. Untuk operasi penjumlahan dan pengurangan, + pindah ruas jadi - dan sebaliknya - pindah ruas menjadi +. 10x + 12
ο»ΏHalo Quipperian! Pada sesi kali ini Quipper Blog akan membahas suatu topik yang menarik lho untuk kalian yaitu β€œMengenal Konsep Dasar dan Rumus Umum Persamaan Linear Satu Variabel PLSV”. Tahukah kamu kalau konsep PLSV ini banyak digunakan untuk menyelesaikan soal-soal aplikasi matematika dalam kehidupan sehari-hari, dan juga tahukah kalian konsep ini juga sebagai prasyarat untuk memahami konsep dari pertidaksamaan linear satu variabel, pertidaksamaan nilai mutlak, persamaan linear dua variabel PLDV, dan pertidaksamaan linear tiga variabel PLTV. Sehingga konsep ini harus dikuasai dengan sangat baik. Bagaimana Quipperan sudah mulai tertarik ? Let’s check this out! Pengertian Persamaan Linear Satu Variabel Persamaan linear satu variabel adalah kalimat terbuka yang dihubungkan tanda sama dengan = dan hanya mempunyai satu variabel berpangkat 1. Bentuk umum persamaan linier satu variabel adalah ax + b = 0. Contohnya x + 3 = 7 3a + 4 = 1 r2– 6 = 10 Untuk memahami persamaan linear satu variabel, terdapat elemen-elemen yang perlu kita pahami yaitu tentang pernyataan, kalimat terbuka, variabel, dan konstanta. Kalimat terbuka adalah kalimat yang belum dapat diketahui nilai kebenarannya, variabel peubah adalah lambang simbol pada kalimat terbuka yang dapat diganti oleh sembarang anggota himpunan yang telah ditentukan. Konstanta adalah lambang yang menyatakan suatu bilangan tertentu, dan himpunan penyelesaian adalah himpunan semua pengganti dari variabel-variabel pada kalimat terbuka yang membuka kalimat tersebut menjadi benar. Contohnya x + 13 = 17 7 – y = 12 4z – 1 = 11 Pada bagian 1. x + 13 = 17 disebut kalimat terbuka, nilai x disebut variabel, sedangkan 13 dan 17 disebut dengan konstanta. Himpunan penyelesaiannya adalah x = 4 Pada bagian 2. 7 – y = 12 disebut dengan kalimat terbuka, nilai y disebut dengan variabel, sedangkan 7 dan 12 disebut dengan konstanta. Himpunan penyelesaiannya adalah y = -5 Pada bagian 3. 4z – 1 = 11 disebut dengan kalimat terbuka, nilai z disebut dengan variabel, sedangkan – 1 dan 11 disebut dengan konstanta. Himpunan penyelesaiannya adalah z = 3. Kesetaraan Bentuk PLSV Dua persamaan atau lebih dikatakan setara Equivalen jika mempunyai himpunan penyelesaian yang sama dan dinotasikan dengan simbol β€œ ↔ β€œ. Syarat suatu persamaan dapat dinyatakan ke dalam suatu persamaan yang setara adalah dengan cara Menambah atau mengurangi kedua ruas dengan bilangan yang sama. Mengalikan atau membagi kedua ruas dengan bilangan yang sama. Contoh soal 1. Tentukan nilai x – 3 = 5 Penyelesaian Jika x diganti 8 maka nilai 8-3 = 5 {benar} syarat ke-1 Jadi penyelesaian persamaan x-3 = 5 adalah x = 8 2. Tentukan nilai 2x – 6 = 10 Penyelesaian 2x-6 = 10 β†’ 2x = 16 syarat ke-1 Nilai x diganti dengan 8 agar kedua persamaan setara 28 = 16 β†’ 16 = 16 . Jadi penyelesaian persamaan 2x – 6 = 10 adalah x = 8 3. Tentukan nilai x + 4 = 12 Penyelesaian x + 4 = 12 β†’ x = 12-4 { syarat ke-1} Maka nilai x = 8 Jadi penyelesaiannya adalah x = 8 Penyelesaian Soal PLSV Cara menyelesaikan persamaan linear satu variabel adalah dengan cara substitusi. Metode substitusi adalah mengganti variabel dengan bilangan yang sesuai sehingga persamaan tersebut menjadi kalimat yang benar. Contoh Tentukan himpunan penyelesaian dari persamaan y + 2 = 5, jika nilai y merupakan variabel dan bilangan asli. Pembahasan Kita ganti variabel y dengan nilai y = 3 substitusi, ternyata persamaan y + 2= 5 menjadi kalimat terbuka yang benar. Sehingga himpunan penyelesaiannya dari y + 2 = 5 adalah {3}. Adapun langkah-langkah penyelesaian menggunakan metode substitusi adalah sebagai berikut Kelompokkan suku yang sejenis. Jika suku sejenis di beda ruas, pindahkan agar menjadi satu ruas. Jika pindah ruas maka tanda berubah positif + menjadi negatif - dan sebaliknya. Cari variabel hingga = konstanta yang merupakan penyelesaian. Contoh Tentukan himpunan penyelesaian persamaan 4x – 3 = 3x + 5. Jika nilai x variabel pada himpunan bilangan bulat. Pembahasan 4x – 3 = 3x + 5 4x- 3 + 3 = 3x +5 + 3 kedua ruas ditambah 3 4x = 3x + 8 langkah 1 kelompokkan suku sejenis 4x – 3x = 8 x = 8 himpunan penyelesaiannya adalah x = 8 Model Matematika PLSV Aplikasi PLSV banyak digunakan dalam penyelesaian masalah di kehidupan sehari-hari contohnya menentukan bilangan yang tidak diketahui, menentukan luas dan keliling tanah, penentuan jumlah hasil panen, harga jual suatu kendaraan, jumlah paket pengiriman jasa, dll. Biasanya dalam penyelesaian soal aplikasi PLSV adalah dengan membuat model matematika. mobel matematika ini digunakan dengan cara memisalkan informasi yang tidak diketahui yaitu dengan memisalkan dengan variabel tertentu pada informasi yang tidak diketahui. Contoh soal Aplikasi SPLV adalah sebagai berikut 1. Selisih dua bilangan adalah 7 dan jumlah keduanya adalah 31. Buatlah model matematikanya dan tentukan kedua bilangan tersebut. Pembahasan Model Matematikanya Bilangan I = x Bilangan II = x =7 Dan penyelesaian dari model matematika di atas adalah x + x + 7 = 31 2x +7 = 31 2x = 12 Jadi, Bilangan I = 12 Bilangan II = x+7 = 19 2. Seorang petani mempunyai sebidang tanah berbentuk persegi panjang. Lebar tanah tersebut 6 m lebih pendek daripada panjangnya. Jika keliling tanah 60 m, buatlah model matematika dan tentukan luas tanah petani. Pembahasan Misalkan panjang tanah = x dan lebar tanah = x-6 Jadi model matematikanya adalah p = x, dan l = x-6 Sedangkan untuk penyelesaian dari model matematika di atas adalah K = 2 p + l 60 = 2 x + x – 6 60 = 4x – 12 72 = 4x 18 = x Sehingga luas tanah = p x l =x x-6 =18 18-6 =18 x 12 =216 cm2 Soal dan Pembahasan dari Bank Soal Quipper Bagaimana Quipperian sudah mulai memahami konsep dan metode penyelesaian dari sistem persamaan linear satu variabel PLSV ? Agar kalian lebih terlatih lagi dalam menyelesaikan soal-soal tentang PLSV, Quipper Blog lampirkan soal-soal dan pembahasan dari bank soal Quipper yang selalu Up to Date dengan persiapan-persiapan soal ujian yang kalian akan hadapi. Let’s check this out! 1. Soal Kesetaraan PLSV Penyelesaian Dengan menggunakan langkah-langkah penyelesaian linear satu variabel, diperoleh 2. Soal Aplikasi PLSV dalam menentukan jumlah hasil panen Jika jumlah hasil panen jeruk di suatu perkebunan pada bulan ke-t dengan Bt = 80t + 75 kg, maka jumlah hasil panen jeruk sebesar 1,275 ton akan terjadi pada bulan ke…….. Penyelesaian Diketahui B t = 80 t + 75 kg B t = 1,275 ton = 1275 kg Oleh karena B t = 80t + 75 kg dan t = 1275 kg , maka diperoleh Jadi, jumlah hasil panen jeruk sebesar 1,275 ton akan terjadi pada bulan ke-15. Bagaimana Quipperian sudah memahami dan menguasai akan konsep dan latihan soal tentang persamaan linear satu variabel PLSV ? Ternyata dengan memahami konsep dasar dan berlatih soal dari bank soal Quipper, setiap materi ternyata lebih mudah dipahami ya. Apabila Quipperian ingin memahami setiap konsep dari pelajaran lainnya, jangan ragu untuk bergabung dengan Quipper Video. Karena disana akan banyak penjelasan-penjelasan menarik dan dilengkapi dengan animasi yang kece abis pokoknya. Sehingga membuat pelajaran kalian lebih gampang, asik, dan menyenangkan. Ayo gabung bersama Quipper Video. Tampomas, Husein. 2006. Seribu Pena Matematika Jilid 1 untuk SMA/MA kelas X. Jakarta; Penerbit Erlangga Sinaga, barnok. Dkk. kelas X untuk SMA/MA. Jakarta Kemdikbud Sukino, Wilson Simangunsong. 2007. Matematika untuk SMP Kelas VII. Jakarta Erlangga Penulis William Yohanes Penyelesaian a. Variabel pada persamaan 2x+ 5 = 10 adalah x dan berpangkat satu, maka persamaan linear satu variabel. b. Variabel pada persamaan x 2 + 3x = 18 adalah x yang memiliki pangkat satu dan dua, maka tidak termasuk persamaan linear satu variabel. c. Variabel pada persamaan 2x + 2y = 8 adalah x dan y, karena terdapat dua variabel, maka Persamaan Linear Satu Variabel dan Contoh Soalnya SPLSV A. Pengertian Sistem Persamaan Linear Satu Variabel SPLSV Sistem persamaan linear satu variabel SPLSV adalah bentuk kalimat terbuka dari persamaan dengan satu variabel PLSV dalam sistem linear sebagai solusi umum dari persamaan terkait dalam sistem tersebut. Sistem ini juga sering disebut dengan SPLSV atau dalam bahasa inggris "System of Linear Equations in One Variable". Untuk memahami SPLSV diperlukan pemahaman mengenai kalimat tertutup dan terbuka Navigasi Cepat A. Pengertian SPLSV A1. Kalimat Tertutup dan Terbuka A2. Bentuk Umum PLSV dalam SPLSV A2. Contoh Bentuk Umum dan Elemen Pembentuknya B. Cara Penyelesaian SPLSV C. Contoh Soal SPLSV D. Contoh Soal Cerita SPLSV A1. Kalimat Tertutup dan Terbuka Kalimat tertutup adalah kalimat yang nilai kebenarannya selalu benar atau selalu salah. Kalimat tertutup disebut juga dengan "pernyataan" atau "closed sentence", berikut contohnya. 2 adalah bilangan genap Benar Ir. Soekarno adalah presiden pertama NKRI Benar 4 > 2 Benar 7 + 1 = 8 Benar 1 dibaca dua Salah Indonesia adalah sebuah provinsi Salah Everest adalah gunung terendah Salah Kalimat terbuka adalah suatu kalimat yang nilai kebenarannya dapat ditentukan baik salah maupun benar. Kalimat terbuka ditandai dengan adanya variabel dalam kalimat tersebut. Kalimat terbuka dalam bahasa inggris disebut dengan "closed sentence", berikut contohnya. "Harga buku adalah Rp 3000" merupakan kalimat terbuka, nilai kebenarannya sesuai dengan "toko dan jenis buku yang dimaksud" sehingga "harga buku" sebagai suatu variabel. "x = 3" merupakan kalimat terbuka, nilai kebenaran sesuai dengan "nilai variabel x" yang dimaksud. "n + 1 = 3" merupakan kalimat terbuka, jika variabel n = 2 maka kalimat tersebut benar karena 2 + 1 = 3, sedangkan jika variabel n = 1 maka kalimat tersebut salah karena 1 + 1 = 2. Berikut contoh kalimat terbuka dalam bentuk persamaan linear satu variabel PLSV yang diterapkan dalam sistem persamaan linear satu variabel. Misalnya harga buku adalah Rp 3000,-Sehingga dibuat suatu kalimat terbuka dalam bentuk persamaan linear satu variabel PLSV sebagai = 3000Berapa harga 3 buku di toko tersebut?Sehingga dihitung kasus matematika tersebut menggunakan sistem persamaan linear satu variabel SPLSV, sebagai berikutKarena x = 3000, diperoleh3x = 3 Γ— 3000 = 9000Jadi, harga 3 buku adalah Rp 9000,- Lebih lanjut, sistem linear dapat memuat beberapa komponen sekaligus berupa variabel dan konstanta sebagai gambaran pernyataan yang dibicarakan. SPLSV merupakan salah satu bentuk sederhana dari sistem linear. A2. Bentuk Umum Persamaan Linear Satu Variabel PLSV dalam SPLSV Berikut bentuk umum dan ciri-ciri persamaan linear satu variabel. ax + b = 0 dengan a merupakan koefisien variabel x x merupakan variabel dari PLSV. Satu variabel berarti dalam persamaan hanya terdapat 1 variabel, misalnya x. Beberapa persamaan dapat memuat lebih dari 1 suku dengan variabel x; misalnya 2x + 2 = 3x + 3 b merupakan sebuah konstanta di ruas kiri Konstanta 0 pada salah satu ruas merupakan bentuk solusi umum dari fungsi persamaan linear sebagai konsep dasar. Namun, tidak semua persamaan linear ditulis seperti ini. Baca juga Aljabar, Bentuk Aljabar, dan Operasi Aljabar Catatan Bentuk umum suatu fungsi persamaan adalah ekuivalen dengan 0 atau "Zero of Function". Pemahaman ini akan digunakan di tingkat pembelajaran yang lebih tinggi. A3. Contoh Bentuk Umum PLSV dan Elemen Pembentuknya Berikut contoh PLSV dan elemen pembentuknya. Alasan Persamaan "3x + 6 = 0" merupakan bentuk PLSV karena hanya terdiri dari 1 variabel, yaitu variabel "x". B. Cara Penyelesaian Persamaan Linear Satu Variabel SPLSV Cara penyelesaian SPLSV adalah menghitung nilai numerik dari variabel-nya dengan memisahkan variabel dan konstanta sehingga masing-masing ruas hanya memuat variabel dan konstanta tidak keduanya. Berikut cara penyelesaian sistem persamaan linear satu variabel. Memindahkan suatu elemen ke ruas lainnya artinya memberikan nilai lawan dari elemen tersebut ke ruas lainnya Misalnya suatu persamaan 2x + 1 = 2, akan dipindahkan konstanta 1 di ruas kiri ke kanan. 2x + 1 = 5 i ⇔ 2x = 5 + -1 ii ⇔ 2x = 5 - 1 iii ⇔ 2x = 4 iv terlihat pada langkah ii di ruas kanan ditambahkan dengan nilai -1 yang merupakan lawan dari konstanta 1 di ruas Tanda ⇔ merupakan operator logika ekuivalen, menyatakan bentuk semua persamaan di atas mempunyai solusi penyelesaian yang sama. Mengapa hal ini terjadi? Sebenarnya untuk memindahkan suatu elemen dilakukan penghapusan nilai di ruas persamaan yang memuat elemen tersebut. Karena merupakan bentuk persamaan, jika terjadi penghapusan maka kedua ruas harus dilakukan penghapusan. Berikut dasar logikanya. 2x + 1 = 5 ⇔ 2x + 1 - 1 = 5 - 1 ⇔ 2x + 0 = 5 - 1 ⇔ 2x = 5 - 1 Ingat mengurangkan sama artinya dengan menjumlahkan dengan angka negatif. 2x = 5 - 1 ⇔ 2x = 5 + -1 Sehingga untuk mempercepat perhitungan, dapat langsung memberikan nilai lawannya. 2x + 1 = 5 ⇔ 2x = 5 - 1 ⇔ 2x = 4 Perhitungan nilai variabel dilakukan dengan membagi setiap ruas dengan koefisien variabel-nya Setelah masing-masing ruas disesuaikan sehingga masing-masing ruas hanya memuat variabel dan konstanta tidak keduanya, baru perhitungan nilai variabel dilakukan. Hal ini dilakukan dengan membagi masing-masing ruas dengan nilai koefisien variabel yang dihitung. Misalnya kelanjutan dari langkah sebelumnya telah ditemukan 2x = 4Dilanjutkan dengan menghitung nilai xKarena koefisien x adalah 2, masing-masing ruas dibagi dengan 2 2x = 4Sehingga solusi persamaan adalah nilai x = 2 Memindahkan elemen variabel dilakukan secara menyeluruh termasuk koefisien-nya Untuk memindahkan suatu variabel ke ruas lainnya, nilai koefisien variabel juga ikut dipindahkan. Misalnya akan dipindahkan variabel x ke ruas lainnya dari persamaan 3x = 2x + 1⇔ 3x - 2x = 1⇔ x = 1Jadi, solusi persamaan di atas adalah x = 1 Berikut contoh soal SPLSV dan penyelesaiannya. Untuk memastikan solusi yang ditemukan benar, dapat dilakukan pengujian dengan substitusi memasukkan nilai x ke persamaan. Tentukan solusi dari sistem persamaan linear 3x - 4 = 2 Jawaban Solusi persamaan tersebut adalah x = 2 Untuk memastikan solusi yang diperoleh benar,jika x = 2, maka substitusi 3x - 4 = 2 sebagai berikut3x - 4 = 23.2 - 4 = 26 - 4 = 22 = 2 Benar Tentukan solusi dari sistem persamaan linear x + 3 = 2x + 6 Jawaban Solusi persamaan tersebut adalah x = -3 Untuk memastikan solusi yang diperoleh benar,jika x = -3, maka substitusi x + 3 = 2x + 6 sebagai berikutx + 3 = 2x + 6-3 + 3 = 2.-3 + 60 = -6 + 60 = 0 Benar Baca juga Grafik Persamaan Linear Satu Variabel D. Contoh Soal Cerita SPLSV Eddy membeli 3 buku tulis dan sebuah pensil. Diketahui harga pensil adalah Rp dan total belanja Rp Hitunglah harga sebuah buku yang dibeli Eddy? Diketahui 3 Buku = 3xPensil = Rp = Rp Penyelesaian Dari informasi yang ada ditemukan satu variabel buku yaitu x yang akan dicari. Sehingga dapat digunakan sistem persamaan linear satu variabel pada permasalahan di atas. 3 Buku + Pensil = Total3x + Rp = Rp = Rp - Rp = Rp = Rp = Rp = Rp Jawaban Harga buku yang dibeli Eddy adalah Rp per buah Untuk memastikan harga buku, dapat dilakukan substitusi harga buku3 Buku + Pensil = Total3 Γ— Rp + Rp = Rp + Rp = Rp = Rp Benar Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "SPLSV dan Contoh Soalnya". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih ... Sehinggadapat digunakan sistem persamaan linear satu variabel pada permasalahan di atas. 3 Buku + Pensil = Total 3x + Rp 2.000 = Rp 11.000 3x = Rp 11.000 - Rp 2.000 3x = Rp 9.000 (3x)/3 = Rp 9.000/3 x = Rp 3.000 Buku = Rp 3.000 Jawaban: Harga buku yang dibeli Eddy adalah Rp 3.000 per buah
Sistem Persamaan Linear Tiga Variabel SPLTV merupakan salah satu materi matematika wajib / peminatan yang dipelajari saat tingkat SMA, tepatnya di kelas X. Materi ini sebenarnya merupakan lanjutan dari materi SPLDV yang sudah dipelajari saat tingkat SMP. Oleh karenanya, pembaca disarankan sudah menguasai metode penyelesaian SPLDV terlebih dahulu. Sistem Persamaan Linear Tiga Variabel SPLTV diartikan sebagai kumpulan persamaan linear yang memuat tiga variabel dengan bentuk umum $$\begin{cases} a_1x + b_1y + c_1z & = d_1 \\ a_2x + b_2y + c_2z & = d_2 \\ a_3x + b_3y + c_3z & = d_3 \end{cases}$$ Untuk memantapkan pemahaman tentang materi SPLTV ini, berikut disajikan sejumlah soal beserta pembahasannya yang super lengkap dengan tipe berupa soal cerita aplikasi. Soal juga dapat diunduh melalui tautan berikut Download PDF, 152 KB. Baca Juga Soal dan Pembahasan – Sistem Persamaan Linear Dua Variabel SPLDV Baca Juga Soal dan Pembahasan – Soal Ingatan & Pemahaman Sistem Persamaan Linear Tiga Variabel SPLTV Today Quote Thank you, Teacher, for guiding us, for inspiring us, for making us what we are today. Bagian Pilihan Ganda Soal Nomor 1 Diketahui keliling segitiga $ABC$ $70$ cm. Panjang $AC$ adalah $2$ cm lebihnya dari panjang $AB$. Panjang $BC$ adalah $6$ cm kurangnya dari panjang $AC$. Jika $x$ menyatakan panjang $AB$, $y$ menyatakan panjang $BC$, dan $z$ menyatakan panjang $AC$, maka SPLTV dari hubungan panjang sisi-sisi segitiga $ABC$ adalah $\cdots \cdot$ A. $\begin{cases} x+y+z & = 35 \\ x-z & = -2 \\ y-z & = -6 \end{cases}$ B. $\begin{cases} x+y+z & = 35 \\ x-z & = 2 \\ y-z & = 6 \end{cases}$ C. $\begin{cases} x+y+z & = 70 \\ x-z & = 2 \\ y-z & = 6 \end{cases}$ D. $\begin{cases} x+y+z & = 70 \\ x-z & = -2 \\ y-z & = 6 \end{cases}$ E. $\begin{cases} x+y+z & = 70 \\ x-z & = -2 \\ y-z & = -6 \end{cases}$ Pembahasan Dimisalkan bahwa $x = AB, y = BC, z = AC$ dalam satuan cm notasi garis tegak menyatakan panjang. Diketahui keliling segitiga $ABC$ $70$ cm. Keliling adalah jumlah dari semua panjang sisi-sisi bangun datar. Untuk itu, kita peroleh persamaan $\boxed{x + y + z = 70}$ Panjang $AC$ $z$ adalah $2$ cm lebihnya dari panjang $AB$ $x$. Secara matematis, ditulis $\boxed{z = x + 2 \Leftrightarrow x-z =-2}$ Panjang $BC$ $y$ adalah $6$ cm kurangnya dari panjang $AC$ $z$. Secara matematis, ditulis $\boxed{y = z-6 \Leftrightarrow y-z = -6}$ Dengan demikian, diperoleh SPLTV $\begin{cases} x+y+z & = 70 \\ x-z & = -2 \\ y-z & = -6 \end{cases}$ Jawaban E [collapse] Soal Nomor 2 Bu Sari mempunyai uang pecahan lima ribuan, sepuluh ribuan, dan dua puluh ribuan. Jumlah uang tersebut adalah Uang pecahan sepuluh ribuan $6$ lembar lebih banyak daripada uang pecahan lima ribuan. Banyak lembar uang pecahan dua puluh ribuan dua kali banyak lembar uang pecahan lima ribuan. Jika $x$ menyatakan banyak lembar uang lima ribuan, $y$ menyatakan banyak lembar uang sepuluh ribuan, dan $z$ menyatakan banyak lembar uang dua puluh ribuan, maka SPLTV yang menyatakan hubungan pecahan-pecahan uang tersebut adalah $\cdots \cdot$ A. $\begin{cases} x+2y+4z & = 16 \\ x-y & = -6 \\ 2x-z & = 0 \end{cases}$ B. $\begin{cases} x+2y+4z & = 32 \\ x-y & = -6 \\ 2x-z & = 0 \end{cases}$ C. $\begin{cases} x+2y+4z & = 32 \\ x-y & = 6 \\ 2x-z & = 0 \end{cases}$ D. $\begin{cases} x+2y+4z & = 32 \\ x-y & = 6 \\ x-2z & = 0 \end{cases}$ E. $\begin{cases} x+2y+4z & = 16 \\ x-y & = -6 \\ x-2z & = 0 \end{cases}$ Pembahasan Dimisalkan bahwa $x, y, z$ berturut-turut menyatakan banyak lembar uang lima ribuan, sepuluh ribuan, dan dua puluh ribuan. Jumlah uang Bu Sari adalah Secara matematis, ditulis $$ + + = disederhanakan menjadi $\boxed{x + 2y + 4z = 32}$ Uang pecahan sepuluh ribuan $6$ lembar lebih banyak daripada uang pecahan lima ribuan. Secara matematis, ditulis $\boxed{y = x + 6 \Leftrightarrow x-y = -6}$ Banyak lembar uang pecahan dua puluh ribuan dua kali banyak lembar uang pecahan lima ribuan. Secara matematis, ditulis $\boxed{z = 2x \Leftrightarrow 2x-z = 0}$ Dengan demikian, diperoleh SPLTV $\begin{cases} x+2y+4z & = 32 \\ x-y & = -6 \\ 2x-z & = 0 \end{cases}$ Jawaban B [collapse] Soal Nomor 3 Sebuah toko alat tulis menyediakan spidol aneka warna. Perbandingan antara banyak spidol biru dan spidol merah adalah $3 4$. Perbandingan antara banyak spidol merah dan spidol hitam adalah $4 5$. Jumlah ketiga jenis spidol tersebut adalah $430$ buah. Jika $x, y, z$ berturut-turut menyatakan banyak spidol biru, merah, dan hitam, maka SPLTV yang menyatakan hubungan ketiga jenis spidol adalah $\cdots \cdot$ A. $\begin{cases} x & = \frac34 y \\ y & = \frac45 z \\ x + y + z & = 430 \end{cases}$ B. $\begin{cases} x & = \frac34 y \\ y & = \frac54 z \\ x + y + z & = 430 \end{cases}$ C. $\begin{cases} x & = \frac43 y \\ y & = \frac45 z \\ x + y + z & = 430 \end{cases}$ D. $\begin{cases} 4x & = 3y \\ 4y & = 5z \\ x + y + z & = 430 \end{cases}$ E. $\begin{cases} 3x & = 4y \\ 4y & = 5z \\ x + y + z & = 430 \end{cases}$ Pembahasan Dimisalkan $x, y, z$ berturut-turut menyatakan banyak spidol biru, merah, dan hitam. Perbandingan antara banyak spidol biru $x$ dan spidol merah $y$ adalah $3 4$. Secara matematis, ditulis $\boxed{\dfrac{x}{y} = \dfrac34 \Leftrightarrow x = \dfrac34y}$ Perbandingan antara banyak spidol merah $y$ dan spidol hitam $z$ adalah $4 5$. Secara matematis, ditulis $\boxed{\dfrac{y}{z} = \dfrac45 \Leftrightarrow y = \dfrac45z}$ Jumlah ketiga jenis spidol tersebut adalah $430$ buah. Secara matematis, ditulis $\boxed{x + y + z = 430}$ Dengan demikian, diperoleh SPLTV $\begin{cases} x & = \frac34y \\ y & = \frac45z \\ x + y + z & = 430 \end{cases}$ Jawaban A [collapse] Soal Nomor 4 Diketahui Deksa $4$ tahun lebih tua dari Elisa. Diketahui juga bahwa Elisa $3$ tahun lebih tua dari Firda. Jika jumlah umur Deksa, Elisa, dan Firda adalah $58$ tahun, maka jumlah umur Deksa dan Firda adalah $\cdots \cdot$ A. $52$ tahun D. $39$ tahun B. $45$ tahun E. $35$ tahun C. $42$ tahun Pembahasan Misalkan umur Deksa, Elisa, dan Firda sekarang berturut-turut dinotasikan dengan $D, E$, dan $F$. Diketahui Deksa $4$ tahun lebih tua dari Elisa. Secara matematis, ditulis $\boxed{D = E + 4}$ Diketahui juga bahwa Elisa $3$ tahun lebih tua dari Firda. Secara matematis, ditulis $\boxed{E = F + 3}$ Jumlah umur Deksa, Elisa, dan Firda adalah $58$ tahun sehingga ditulis $\boxed{D + E + F = 58}$ Sekarang, kita memperoleh SPLTV $\begin{cases} D & = E + 4 && \cdots 1 \\ E & = F + 3 && \cdots 2 \\ D + E + F & = 58 && \cdots 3 \end{cases}$ Substitusi persamaan $2$ pada persamaan $1$. $\begin{aligned} D & = \color{red}{E} + 4 \\ D & = F + 3+4 = F + 7 && \cdots 4 \end{aligned}$ Substitusi persamaan $2$ dan $4$ pada persamaan $3$. $\begin{aligned} \color{blue}{D}+\color{red}{E}+F & = 58 \\ F+7+F+3+F & = 58 \\ 3F+10&=58 \\ 3F & = 48 \\ F & = 16 \end{aligned}$ Karena $F = 16$, maka $D = \color{red}{16} + 7 = 23$ Jadi, jumlah umur Deksa dan Firda adalah $\boxed{D+F=23+16=39~\text{tahun}}$ Jawaban D [collapse] Soal Nomor 5 Diketahui harga $4$ kg salak, $1$ kg jambu, dan $2$ kg kelengkeng adalah Harga $1$ kg salak, $2$ kg jambu, dan $2$ kg kelengkeng adalah Harga $3$ kg salak, $1$ kg jambu, dan $1$ kg kelengkeng adalah Harga $1$ kg jambu adalah $\cdots \cdot$ A. D. B. E. C. Pembahasan Misalkan harga salak, jambu, dan kelengkeng per kilogram berturut-turut dinotasikan dengan $S, J$, dan $K$. Dari keterangan yang diberikan, dapat dibuat SPLTV $\begin{cases} 4S + J + 2K & = && \cdots 1 \\ S + 2J + 2K & = && \cdots 2 \\ 3S + J + K & = && \cdots 3 \end{cases}$ Eliminasi $K$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} 4S + J + 2K & = \\ S + 2J + 2K & = \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} 3S-J & = && \cdots 4 \end{aligned} \end{aligned}$ Eliminasi $K$ dari persamaan $1$ dan $3$. $$\begin{aligned} \! \begin{aligned} 4S+J+2K & = \\ 3S + J + K & = \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~4S+J+2K& = \\~6S+2J+2K& = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 2S + J & = && \cdots 5 \end{aligned} \end{aligned}$$Eliminasi $S$ dari persamaan $4$ dan $5$. $$\begin{aligned} \! \begin{aligned} 3S-J & = \\ 2S + J & = \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~6S-2J& = \\ 6S+3J& = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -5J & = \\ J & = \end{aligned} \end{aligned}$$Jadi, harga $1$ kg jambu adalah Jawaban C [collapse] Soal Nomor 6 Jumlah tiga bilangan adalah $75$. Bilangan pertama lima lebihnya dari jumlah dua bilangan lain. Bilangan kedua sama dengan $\dfrac14$ dari jumlah dua bilangan lain. Bilangan pertamanya adalah $\cdots \cdot$ A. $15$ C. $30$ E. $40$ B. $20$ D. $35$ Pembahasan Misalkan $x, y, z$ berturut-turut menyatakan bilangan pertama, kedua, dan ketiga. Jumlah tiga bilangan itu adalah $75$. Secara matematis, ditulis $\boxed{x + y + z = 75}$ Bilangan pertama lima lebihnya dari jumlah dua bilangan lain. Secara matematis, ditulis $\boxed{x = y + z + 5 \Leftrightarrow x-y-z = 5}$ Bilangan kedua sama dengan $\dfrac14$ dari jumlah dua bilangan lain. Secara matematis, ditulis $\boxed{y = \dfrac14x+z \Leftrightarrow x-4y+z = 0}$ Dengan demikian, diperoleh SPLTV $\begin{cases} x+y+z & = 75 && \cdots 1 \\ x-y-z & = 5 && \cdots 2 \\ x-4y+z & = 0 && \cdots 3 \end{cases}$ Eliminasi $y$ dan $z$ sekaligus dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} x+y+z & = 75 \\ x-y-z & = 5 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 2x & = 80 \\ x & = 40 \end{aligned} \end{aligned}$ Jadi, bilangan pertamanya adalah $\boxed{40}$ Jawaban E [collapse] Soal Nomor 7 Diketahui bilangan tiga angka $\overline{xyz}$. Nilai $x$ ditambah $y$ hasilnya $10$. Nilai $x$ dikurangi $z$ hasilnya $5$. Nilai $y$ dikurangi $z$ hasilnya $3$. Nilai dari $xyz$ sama dengan $\cdots \cdot$ A. $24$ D. $32$ B. $25$ E. $40$ C. $26$ Pembahasan SPLTV yang sesuai dengan permasalahan di atas adalah $\begin{cases} x+y & = 10 && \cdots 1 \\ x-z & = 5 && \cdots 2 \\ y-z & = 3 && \cdots 3 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} x+y & = 10 \\ x-z & = 5 \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} y + z & = 5~~~\cdots 4 \end{aligned} \end{aligned}$ Eliminasi $z$ dari persamaan $3$ dan $4$. $\begin{aligned} \! \begin{aligned} y-z & = 3 \\ y+z & = 5 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 2y & = 8 \\ y & = 4 \end{aligned} \end{aligned}$ Substitusi $\color{red}{y=4}$ pada persamaan $1$. $\begin{aligned} x + \color{red}{y} & = 10 \\ x + 4 & = 10 \\ x & = 6 \end{aligned}$ Substitusi $\color{red}{y=4}$ pada persamaan $3$. $\begin{aligned} \color{red}{y}-z & = 3 \\ 4-z & = 3 \\ z & = 1 \end{aligned}$ Jadi, nilai dari $\boxed{xyz = 641 = 24}$ Jawaban A [collapse] Baca Juga Materi, Soal, dan Pembahasan – Sistem Persamaan Linear dan Kuadrat Soal Nomor 8 Farly mempunyai kelereng merah, biru, dan hijau. Perbandingan antara banyak kelereng merah dan biru adalah $3 4$. Jumlah kelereng merah dan hijau adalah $27$. Jika dua kali banyak kelereng biru ditambah banyak kelereng hijau sama dengan $37$, maka banyak kelereng merah, biru, dan hijau berturut-turut yang dimiliki Farly adalah $\cdots \cdot$ A. $12, 16$, dan $20$ B. $12, 16$, dan $18$ C. $12, 16$, dan $15$ D. $6, 8$, dan $21$ E. $6, 8$, dan $15$ Pembahasan Misalkan $x, y, z$ berturut-turut menyatakan banyaknya kelereng merah, biru, dan hijau. Perbandingan antara banyak kelereng merah $x$ dan biru $y$ adalah $3 4$. Secara matematis, ditulis $\boxed{\dfrac{x}{y} = \dfrac34 \Leftrightarrow 4x-3y = 0}$ Jumlah kelereng merah $x$ dan hijau $z$ adalah $27$. Secara matematis, ditulis $\boxed{x + z = 27}$ Dua kali banyak kelereng biru $y$ ditambah banyak kelereng hijau $z$ sama dengan $37$. Secara matematis, ditulis $\boxed{2y + z = 37}$ Dengan demikian, diperoleh SPLTV $\begin{cases} 4x-3y & = 0 && \cdots 1 \\ x + z & = 27 && \cdots 2 \\ 2y + z & = 37 && \cdots 3 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 4x-3y & = 0 \\ x+z & = 27 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 4 \end{aligned} \right & \! \begin{aligned}~4x-3y & = 0 \\ 4x+4z & = 108 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 3y + 4z & = 108 && \cdots 4 \end{aligned} \end{aligned}$$Eliminasi $z$ dari persamaan $3$ dan $4$. $\begin{aligned} \! \begin{aligned} 2y + z & = 37 \\ 3y+4z & = 108 \end{aligned} \left \! \begin{aligned} \times 4 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~8y+4z & = 148 \\ 3y+4z & = 108 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 5y & = 40 \\ y & = 8 \end{aligned} \end{aligned}$ Substitusi $\color{red}{y = 8}$ pada persamaan $3$. $\begin{aligned} 2\color{red}{y} + z & = 37 \\ 28 + z & = 37 \\ 16+z & = 37 \\ z & = 21 \end{aligned}$ Substitusi $\color{blue}{z = 21}$ pada persamaan $2.$ $\begin{aligned} x + \color{blue}{z} & = 27 \\ x + 21 & = 27 \\ x & = 6 \end{aligned}$ Jadi, banyaknya kelereng merah, biru, dan hijau berturut-turut adalah $\boxed{6, 8,~\text{dan}~21}$ Jawaban D [collapse] Soal Nomor 9 Harga $3$ buku tulis, $2$ pensil, dan $3$ bolpoin adalah Harga $2$ buku tulis dan $3$ pensil adalah Harga $4$ pensil dan $3$ bolpoin adalah Jika seorang siswa membeli $2$ buku, $1$ pensil, dan $1$ bolpoin, maka ia harus membayar uang sebesar $\cdots \cdot$ A. D. B. E. C. Pembahasan Misalkan $x, y, z$ berturut-turut menyatakan harga $1$ buku tulis, pensil, dan bolpoin dalam rupiah. SPLTV yang sesuai dengan permasalahan di atas adalah $\begin{cases} 3x+2y+3z & = && \cdots 1 \\ 2x + 3y & = && \cdots 2 \\ 4y + 3z & = && \cdots 3 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 3x+2y+3z & = \\ 2x + 3y & = \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~6x+4y+6z & = \\ 6x+9y & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -5y+6z & = && \cdots 4 \end{aligned} \end{aligned}$$Eliminasi $z$ dari persamaan $3$ dan $4$. $$\begin{aligned} \! \begin{aligned} 4y+3z & = \\ -5y + 6z & = \end{aligned} \left \! \begin{aligned} \times 2 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~8y + 6z & = \\ -5y + 6z & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 13y & = \\ y & = \end{aligned} \end{aligned}$$Substitusi $\color{red}{y = pada persamaan $2$. $\begin{aligned} 2x + 3\color{red}{y} & = \\ 2x + 3 & = \\ 2x + & = \\ 2x & = \\ x & = \end{aligned}$ Substitusi $\color{red}{y = pada persamaan $3$. $\begin{aligned} 4\color{red}{y} + 3z & = \\ 4 + 3z & = \\ + 3z & = \\ 3z & = \\ z & = \end{aligned}$ Jadi, harga $1$ buku tulis, pensil, dan bolpoin berturut-turut adalah dan Seorang siswa membeli $2$ buku, $1$ pensil, dan $1$ bolpoin. Uang yang harus dibayar olehnya adalah $$\begin{aligned} 2x+y+z & = 2 \\ & = \text{Rp} \end{aligned}$$Jawaban C [collapse] Soal Nomor 10 Resty mempunyai pita hias berwarna merah, ungu, dan kuning. Jumlah panjang ketiga pita hias tersebut adalah $275$ cm. Panjang pita ungu $5$ cm kurangnya dari panjang pita kuning. Panjang pita kuning $20$ cm lebihnya dari panjang pita merah. Jika pita kuning dipakai sepanjang $35$ cm, maka panjang pita kuning tersisa adalah $\cdots \cdot$ A. $45$ cm D. $75$ cm B. $50$ cm E. $80$ cm C. $65$ cm Pembahasan Misalkan $M, U, K$ berturut-turut menyatakan panjang pita merah, ungu, dan kuning dalam satuan cm. Jumlah panjang ketiga pita hias tersebut adalah $275$ cm. Secara matematis, ditulis $\boxed{M + U + K = 275}$ Panjang pita ungu $5$ cm kurangnya dari panjang pita kuning. Secara matematis, ditulis $\boxed{U = K-5}$ Panjang pita kuning $20$ cm lebihnya dari panjang pita merah. Secara matematis, ditulis $\boxed{K = M+20 \Leftrightarrow M = K-20}$ Dengan demikian, diperoleh SPLTV $\begin{cases} M + U + K & = 275 && \cdots 1 \\ U & = K-5 && \cdots 2 \\ M & = K-20 && \cdots 3 \end{cases}$ Substitusi persamaan $2$ dan $3$ pada persamaan $1$. $\begin{aligned} \color{red}{M} + \color{blue}{U} + K & = 275 \\ K-20+K-5+K & = 275 \\ 3K-25 & = 275 \\ 3K & = 300 \\ K & = 100 \end{aligned}$ Jadi, panjang pita kuning adalah $100$ cm. Karena dipakai sepanjang $35$ cm, maka panjang sisa pita kuning adalah $\boxed{65~\text{cm}}$ Jawaban C [collapse] Soal Nomor 11 Tiga tahun lalu, jumlah usia Hengki, Vio, dan Sunarti adalah $33$ tahun. Sekarang, usia Hengki $2$ tahun kurangnya dari usia Vio, sedangkan jumlah usia Vio dan Sunarti adalah $30$ tahun. Jika sekarang tahun $2020$, maka Hengki lahir pada tahun $\cdots \cdot$ A. $2009$ D. $2005$ B. $2008$ E. $2003$ C. $2007$ Pembahasan Misalkan usia Hengki, Vio, dan Sunarti dalam satuan tahun sekarang berturut-turut dinotasikan dengan $H, V$, dan $S.$ Tiga tahun lalu, jumlah usia Hengki, Vio, dan Sunarti adalah $33$ tahun. Secara matematis, ditulis $\begin{aligned} H-3+V-3+S-3 & = 33 \\ H+V+S-9 & = 33 \\ H+V+S & = 42. \end{aligned}$ Jadi, diperoleh persamaan $\boxed{H+V+S = 42}$ Sekarang, usia Hengki $2$ tahun kurangnya dari usia Vio. Secara matematis, ditulis $\boxed{H = V-2 \Leftrightarrow V = H+2}$ Jumlah usia Vio dan Sunarti adalah $30$ tahun. Secara matematis, ditulis $\boxed{V + S = 30}$ Dengan demikian, diperoleh SPLTV $\begin{cases} H+V+S & = 42 && \cdots 1 \\ V & = H+2 && \cdots 2 \\ V+S & = 30 && \cdots 3 \end{cases}$ Substitusi persamaan $2$ pada persamaan $3$. $\begin{aligned} \color{red}{V}+S & = 30 \\ H+2+S & = 30 \\ S & = 28-H && \cdots 4 \end{aligned}$ Substitusi persamaan $2$ dan $4$ pada persamaan $1$. $\begin{aligned} H+V+S & = 42 \\ H+\cancel{H}+2+28-\cancel{H} & = 42 \\ H + 30 & = 42 \\ H & = 12 \end{aligned}$ Jadi, usia Hengki sekarang adalah $12$ tahun. Jika sekarang tahun $2020$, maka Hengki lahir pada tahun $\boxed{2008}$ Jawaban B [collapse] Soal Nomor 12 Empat tahun mendatang, jumlah umur Sukardi, Dennis, dan Willy adalah $52$ tahun. Enam tahun yang lalu, perbandingan umur Sukardi dan Dennis adalah $1 3$, sedangkan umur Dennis dan Willy berbanding $3 7$. Umur Willy sekarang adalah $\cdots \cdot$ A. $8$ tahun D. $16$ tahun B. $10$ tahun E. $20$ tahun C. $12$ tahun Pembahasan Misalkan $S, D, W$ berturut-turut menyatakan umur Sukardi, Dennis, dan Willy sekarang dalam satuan tahun. Empat tahun mendatang, jumlah umur Sukardi, Dennis, dan Willy adalah $52$ tahun. Secara matematis, ditulis $\begin{aligned} S+4+D+4+W+4 & = 52 \\ S+D+W+12 & = 52 \\ S+D+W & = 40. \end{aligned}$ Diperoleh persamaan $\boxed{S+D+W=40}$ Enam tahun yang lalu, perbandingan umur Sukardi dan Dennis adalah $1 3.$ Secara matematis, ditulis $\begin{aligned} \dfrac{S-6}{D-6} & = \dfrac13 \\ 3S-6 & = D-6 \\ 3S-18 & = D-6 \\ 3S-D & = 12 \end{aligned}$ Diperoleh persamaan $\boxed{3S-D=12}$ Enam tahun yang lalu, umur Dennis dan Willy berbanding $3 7.$ Secara matematis, ditulis $\begin{aligned} \dfrac{D-6}{W-6} & = \dfrac37 \\ 7D-6 & = 3W-6 \\ 7D-42 & = 3W-18 \\ 7D-3W & = 24. \end{aligned}$ Diperoleh persamaan $\boxed{7D-3W = 42}$ Dengan demikian, diperoleh SPLTV $\begin{cases} S+D+W & = 40 && \cdots 1 \\ 3S-D & = 12 && \cdots 2 \\ 7D-3W & = 24 && \cdots 3 \end{cases}$ Eliminasi $S$ dari persamaan $1$ dan $2.$ $$\begin{aligned} \! \begin{aligned} S+D+W & = 40 \\ 3S-D & = 12 \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 1 \end{aligned} \right & \! \begin{aligned}~3S+3D+3W & = 120 \\~3S-D & = 12\end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 4D+3W & = 108 && \cdots 4 \end{aligned} \end{aligned}$$Eliminasi $D$ dari persamaan $3$ dan $4.$ $$\begin{aligned} \! \begin{aligned} 7D-3W & = 24 \\ 4D+3W & = 108 \end{aligned} \left \! \begin{aligned} \times 4 \\ \times 7 \end{aligned} \right & \! \begin{aligned}~28D-12W & = 96 \\~28D+21W & = 756 \end{aligned} \\ & \rule{ – \\ & \! \begin{aligned} -33W & = -660 \\ W & = 20 \end{aligned} \end{aligned}$$Jadi, umur Willy sekarang adalah $\boxed{20~\text{tahun}}$ Jawaban E [collapse] Soal Nomor 13 Pak Sukardi mempunyai uang yang terdiri atas $a$ lembar uang lima ribuan, $b$ lembar uang sepuluh ribuan, dan $c$ lembar uang dua puluh ribuan. Pak Sintan mempunyai uang yang terdiri atas $b$ lembar uang dua puluh ribuan dan $c$ lembar uang lima puluh ribuan. Pak Ridwan mempunyai uang yang terdiri atas $a$ lembar uang lima puluh ribuan dan $c$ lembar uang seratus ribuan. Jika Pak Akwila hanya mempunyai $c$ lembar uang seratus ribuan, maka uang Pak Akwila sebanyak $\cdots \cdot$ A. B. C. D. E. Pembahasan Perhatikan bahwa $a, b, c$ menyatakan variabel yang mewakili banyaknya lembaran uang tertentu. Pak Sukardi mempunyai uang yang terdiri atas $a$ lembar uang lima ribuan, $b$ lembar uang sepuluh ribuan, dan $c$ lembar uang dua puluh ribuan. Secara matematis, ditulis $$ + + = dapat disederhanakan menjadi $\boxed{a + 2b + 4c = 30}$ Pak Sintan mempunyai uang yang terdiri atas $b$ lembar uang dua puluh ribuan dan $c$ lembar uang lima puluh ribuan. Secara matematis, ditulis $ + = dan dapat disederhanakan menjadi $\boxed{2b + 5c = 33}$ Pak Ridwan mempunyai uang yang terdiri atas $a$ lembar uang lima puluh ribuan dan $c$ lembar uang seratus ribuan. Secara matematis, ditulis $ + = dan dapat disederhanakan menjadi $\boxed{a + 2c = 12}$ Dengan demikian, diperoleh SPLTV $\begin{cases} a + 2b + 4c & = 30 && \cdots 1 \\ 2b + 5c & = 33 && \cdots 2 \\ a + 2c & = 12 && \cdots 3 \end{cases}$ Eliminasi $b$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} a+2b+4c & = 30 \\ 2b+5c & = 33 \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} a-c & = -3~~\cdots 4 \end{aligned} \end{aligned}$ Eliminasi $a$ pada persamaan $3$ dan $4$ untuk mendapatkan nilai $c$. $\begin{aligned} \! \begin{aligned} a+2c & = 12 \\ a-c & = -3 \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} 3c & = 15 \\ c & = 5 \end{aligned} \end{aligned}$ Jika Pak Akwila hanya mempunyai $c$ lembar uang seratus ribuan, maka ini berarti uang Pak Akwila sebanyak $$\boxed{ = = \text{Rp} B [collapse] Soal Nomor 15 Diketahui segitiga $ABC$ dengan besar sudut terkecil sama dengan besar $\dfrac13$ sudut menengah. Besar sudut terbesarnya dua kali jumlah besar dua sudut lainnya. Besar sudut-sudut segitiga $ABC$ tersebut adalah $\cdots \cdot$ A. $15^{\circ}, 30^{\circ}$, dan $135^{\circ}$ B. $15^{\circ}, 45^{\circ}$, dan $120^{\circ}$ C. $30^{\circ}, 45^{\circ}$, dan $105^{\circ}$ D. $30^{\circ}, 60^{\circ}$, dan $90^{\circ}$ E. $45^{\circ}, 60^{\circ}$, dan $75^{\circ}$ Pembahasan Misalkan $x, y, z$ berturut-turut menyatakan besar sudut terkecil, sudut menengah, dan sudut terbesar dalam satuan derajat pada segitiga $ABC$. Diketahui segitiga $ABC$ dengan besar sudut terkecil $x$ sama dengan besar $\dfrac13$ sudut menengah $y$. Secara matematis, ditulis $\boxed{x = \dfrac13y \Leftrightarrow 3x-y = 0}$ Besar sudut terbesarnya $z$ dua kali jumlah besar dua sudut lainnya. Secara matematis, ditulis $\boxed{z = 2x + y \Leftrightarrow 2x+2y-z = 0}$ Ingat bahwa jumlah sudut dalam segitiga adalah $180^{\circ}$. Untuk itu, ditulis $\boxed{x + y + z = 180}$ Dengan demikian, diperoleh SPLTV $\begin{cases} 3x-y & = 0 && \cdots 1 \\ 2x+2y-z & = 0 && \cdots 2 \\ x+y+z & = 180 && \cdots 3 \end{cases}$ Eliminasi $y$ dan $z$ dari persamaan $2$ dan $3$. $$\begin{aligned} \! \begin{aligned} 2x+2y-z & = 0 \\ x +y+z & = 180 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~2x+2y-z& = 0 \\ 2x+2y+2z & = 360 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -3z & = -360 && \\ z & = 120 \end{aligned} \end{aligned}$$Substitusi $\color{red}{z = 120}$ pada persamaan $2$. $\begin{aligned} 2x+2y-\color{red}{z} & = 0 \\ 2x+2y-120 & = 0 \\ 2x + 2y & = 120 \\ x + y & = 60 && \cdots 4 \end{aligned}$ Eliminasi $y$ dari persamaan $1$ dan $4$. $\begin{aligned} \! \begin{aligned} 3x-y & = 0 \\ x+y& = 60 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 4x & = 60 \\ x & = 15 \end{aligned} \end{aligned}$ Substitusi $\color{blue}{x=15}$ pada persamaan $4$. $\begin{aligned} \color{blue}{x}+y & = 60 \\ 15+y & = 60 \\ y & = 45 \end{aligned}$ Jadi, besar sudut pada segitiga $ABC$ dimulai dari sudut terkecilnya adalah $15^{\circ}, 45^{\circ}$, dan $120^{\circ}$. Jawaban B [collapse] Soal Nomor 16 Untuk suatu acara pertunjukan dijual tiket dengan harga tiket dewasa tiket remaja dan tiket anak-anak Pada hari pembukaan, jumlah tiket anak-anak dan remaja yang terjual $30$ lebih banyak dari $\dfrac12$ jumlah tiket dewasa yang terjual. Jumlah tiket remaja yang terjual $5$ lebih banyak dari $4$ kali jumlah tiket anak-anak yang terjual. Jika jumlah hasil penjualan tiket seluruhnya maka remaja yang menonton pertunjukan pada hari pembukaan sebanyak $\cdots \cdot$ A. $210$ orang D. $ orang B. $845$ orang E. $ orang C. $ orang Pembahasan Misalkan harga masing-masing tiket dewasa, remaja, dan anak-anak adalah $D, R$, dan $A$. Diketahui harga tiket dewasa tiket remaja dan tiket anak-anak dan hasil penjualan tiket seluruhnya Secara matematis, ditulis $\begin{aligned} & + + \\ & = \end{aligned}$ Sederhanakan bagi $ sehingga diperoleh $\boxed{33D+24R+9A = Jumlah tiket anak-anak dan remaja yang terjual $30$ lebih banyak dari $\dfrac12$ jumlah tiket dewasa yang terjual. Secara matematis, ditulis $A+R = \dfrac12 D + 30$ yang ekuivalen dengan $\boxed{-D+2R+2A = 60}$ Jumlah tiket remaja yang terjual $5$ lebih banyak dari $4$ kali jumlah tiket anak-anak yang terjual. Secara matematis, ditulis $\boxed{R = 4A + 5 \Leftrightarrow R-4A = 5}$ Dengan demikian, diperoleh SPLTV $$\begin{cases} 33D+24R+9A & = && \cdots 1 \\ -D+2R+2A & = 60 && \cdots 2 \\ R-4A & = 5 && \cdots 3 \end{cases}$$Eliminasi $D$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 33D+24R+9A & = \\ -D+2R+2A & = 60 \end{aligned} \left \begin{aligned} \times 1 \\ \times 33 \end{aligned} \right & \! \begin{aligned}~33D+24R+9A& = \\ -33D+66R+66A & = \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} 90R + 75A & = \\ 6R + 5A & = && \cdots 4 \end{aligned} \end{aligned}$$Eliminasi $A$ dari persamaan $3$ dan $4$. $$\begin{aligned} \! \begin{aligned} R-4A & = 5 \\ 6R+5A & = \end{aligned} \left \! \begin{aligned} \times 5 \\ \times 4 \end{aligned} \right & \! \begin{aligned}~5R-20A& = 25 \\ 24R+20A & = \end{aligned} \\ & \rule{ cm}{ + \\ & \! \begin{aligned} 29R & = \\ R & = 845 \end{aligned} \end{aligned}$$Jadi, remaja yang menonton pertunjukan pada hari pembukaan sebanyak $\boxed{845}$ orang. Jawaban B [collapse] Bagian Uraian Soal Nomor 1 Sebuah tempat wisata mempunyai $3$ lahan parkir. Lahan parkir pertama memuat $x$ unit kendaraan. Lahan parkir kedua memuat $y$ unit kendaraan. Lahan parkir ketiga memuat $z$ unit kendaraan. Jumlah kendaraan di lahan pertama dan kedua $110$ unit. Banyak kendaraan di lahan pertama $22$ kurangnya dari banyak kendaraan di lahan ketiga. Jika seperenam dari banyak kendaraan di lahan ketiga telah pergi, banyak kendaraan di lahan kedua dan lahan ketiga menjadi sama banyak. Tentukan SPLTV dari permasalahan tersebut; Jumlah kendaraan yang diparkir seluruhnya saat mula-mula. Pembahasan Jawaban a Dimisalkan bahwa $x, y, z$ berturut-turut menyatakan banyaknya kendaraan yang terparkir di lahan pertama, kedua, dan ketiga. Jumlah kendaraan di lahan pertama dan kedua $110$ unit. Secara matematis, ditulis $\boxed{x + y = 110}$ Banyak kendaraan di lahan pertama $22$ kurangnya dari banyak kendaraan di lahan ketiga. Secara matematis, ditulis $\boxed{x = z-22 \Leftrightarrow x-z = -22}$ Jika seperenam dari banyak kendaraan di lahan ketiga telah pergi berarti tersisa $\frac56$, banyak kendaraan di lahan kedua dan lahan ketiga menjadi sama banyak. Secara matematis, ditulis $\boxed{y = \dfrac56z \Leftrightarrow 6y-5z = 0}$ Dengan demikian, diperoleh SPLTV $\begin{cases} x + y & = 110 && \cdots 1 \\ x-z & = -22 && \cdots 2 \\ 6y-5z & = 0 && \cdots 3 \end{cases}$ Jawaban b Eliminasi $x$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} x+y & = 110 \\ x-z& = -22 \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} y+z & = 132~~\cdots 4 \end{aligned} \end{aligned}$ Eliminasi $y$ pada persamaan $3$ dan $4$. $\begin{aligned} \! \begin{aligned} 6y-5z & = 0 \\ y+z & = 132 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 6 \end{aligned} \right & \! \begin{aligned}~6y-5z& = 0 \\~6y+6z & = 792 \end{aligned} \\ & \rule{3 cm}{ – \\ & \! \begin{aligned} -11z & = -792 \\ z & = 72 \end{aligned} \end{aligned}$ Dengan demikian, $\begin{aligned} x + y + z & = \color{red}{x + y} + z \\ & = 110 + 72 = 182 \end{aligned}$ Jadi, jumlah kendaraan yang diparkir adalah $\boxed{182}$ unit. [collapse] Soal Nomor 2 Tempat parkir sebuah pusat grosir memuat $x$ unit mobil, $y$ unit sepeda motor roda tiga, dan $z$ unit sepeda motor roda dua. Jumlah roda ketiga jenis kendaraan adalah $63$. Jumlah mobil dan sepeda motor roda tiga sebanyak $11$ unit. Jumlah mobil dan sepeda motor roda dua $18$ unit. Tentukan banyak setiap jenis kendaraan. Pembahasan Dimisalkan bahwa $x, y, z$ berturut-turut menyatakan banyaknya mobil, sepeda motor roda tiga, dan sepeda motor roda dua. Jumlah roda ketiga jenis kendaraan adalah $63$. Mobil $x$ ada $4$ roda, sepeda motor roda tiga $y$ ada $3$ roda, dan sepeda motor roda dua $z$ ada $2$. Secara matematis, ditulis $\boxed{4x + 3y + 2z = 63}$ Jumlah mobil dan sepeda motor roda tiga sebanyak $11$ unit. Secara matematis, ditulis $\boxed{x + y = 11}$ Jumlah mobil dan sepeda motor roda dua $18$ unit. Secara matematis, ditulis $\boxed{x + z = 18}$ Dengan demikian, diperoleh SPLTV $\begin{cases} 4x + 3y + 2z & = 63 && \cdots 1 \\ x+y & = 11 && \cdots 2 \\ x+z & = 18 && \cdots 3 \end{cases}$ Eliminasi $y$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 4x+3y+2z & = 63 \\ x + y & = 11 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~4x+3y+2z& = 63 \\ 3x+3y & = 33 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} x+2z & = 30 && \cdots 4 \end{aligned} \end{aligned}$$Eliminasi $x$ dari persamaan $3$ dan $4$. $\begin{aligned} \! \begin{aligned} x+z & = 18 \\ x+2z& = 30 \end{aligned} \\ \rule{ cm}{ – \\ \! \begin{aligned} z & = 12 \end{aligned} \end{aligned}$ Substitusi $\color{red}{z=12}$ pada persamaan $3.$ $\begin{aligned} x + \color{red}{z} & = 18 \\ x + 12 & = 18 \\ x & = 6 \end{aligned}$ Substitusi $\color{blue}{x=6}$ pada persamaan $2$. $\begin{aligned} \color{blue}{x} + y & = 11 \\ 6+y & = 11 \\ y & = 5 \end{aligned}$ Jadi, banyak mobil sebanyak $6$ unit, banyak sepeda motor roda tiga sebanyak $5$ unit, dan banyak sepeda motor roda dua ada $12$ unit. [collapse] Soal Nomor 3 Sebuah pabrik lensa memiliki $3$ unit mesin, yaitu $A, B$, dan $C$. Jika ketiganya bekerja, maka $ lensa dapat dihasilkan dalam waktu satu minggu. Jika hanya mesin $A$ dan $B$ yang bekerja, maka $ lensa dapat dihasilkan dalam satu minggu. Jika hanya mesin $A$ dan $C$ yang bekerja, maka $ lensa dapat dihasilkan dalam satu minggu. Berapa banyak lensa yang dihasilkan tiap-tiap mesin dalam waktu satu minggu? Pembahasan Dimisalkan bahwa $a, b, c$ berturut-turut menyatakan banyaknya lensa yang dihasilkan oleh mesin A, B, dan C dalam waktu seminggu. Jika ketiganya bekerja, maka $ lensa dapat dihasilkan dalam waktu satu minggu. Secara matematis, ditulis $\boxed{a + b + c = Jika hanya mesin $A$ dan $B$ yang bekerja, maka $ lensa dapat dihasilkan dalam satu minggu. Secara matematis, ditulis $\boxed{a + b = Jika hanya mesin $A$ dan $C$ yang bekerja, maka $ lensa dapat dihasilkan dalam satu minggu. Secara matematis, ditulis $\boxed{a + c = Dengan demikian, diperoleh SPLTV $\begin{cases} a+b+c & = && \cdots 1 \\ a+b & = && \cdots 2 \\ a+c & = && \cdots 3 \end{cases}$ Substitusi persamaan $3$ pada persamaan $1$. $\begin{aligned} \color{red}{a+c}+b & = \\ + b & = \\ b & = \end{aligned}$ Substitusi persamaan $2$ pada persamaan $1$. $\begin{aligned} \color{red}{a+b}+c & = \\ + c & = \\ c & = \end{aligned}$ Substitusi $c = pada persamaan $3$. $\begin{aligned} a + \color{red}{c} & = \\ a + & = \\ a & = \end{aligned}$ Jadi, banyak lensa yang dihasilkan oleh mesin A, B, dan C berturut-turut adalah $ $ dan $ lensa. [collapse] Soal Nomor 4 Sebuah bilangan terdiri atas tiga angka yang berjumlah $9$. Angka satuannya tiga lebihnya dari angka puluhan. Jika angka ratusan dan angka puluhan ditukar letaknya, maka diperoleh bilangan yang sama. Tentukan bilangan tersebut. Pembahasan Misalkan bilangan itu ditulis sebagai $\overline{xyz}$. Bilangan ini terdiri dari tiga angka berjumlah $9$ sehingga ditulis $x + y + z = 9$. Angka satuannya, yaitu $z$, tiga lebihnya dari angka puluhan $y$, ditulis $z = y + 3$. Karena angka ratusan $x$ dan puluhan $y$ ditukar tetap menghasilkan bilangan yang sama, maka ini berarti $x = y$. Dengan demikian, diperoleh SPLTV $\begin{cases} x + y + z & = 9 && \cdots 1 \\ z & = y + 3 && \cdots 2 \\ x & = y && \cdots 3 \end{cases}$ Substitusi persamaan $2$ dan $3$ pada persamaan $1$. $\begin{aligned} x + y + z & = 9 \\ \Rightarrow y + y + y + 3 & = 9 \\ 3y & = 6 \\ y & = 2 \end{aligned}$ Didapat $y = \color{red}{2}$ sehingga $x = 2$ dan $z = \color{red}{2} + 3 = 5$. Jadi, bilangan itu adalah $\boxed{\overline{xyz} = 225}$ [collapse] Soal Nomor 5 Seorang pengusaha memiliki modal sebesar dan membaginya dalam tiga bentuk investasi, yaitu tabungan dengan suku bunga $5\%$, deposito berjangka dengan suku bunga $7\%$, dan surat obligasi dengan pembayaran $9\%$. Adapun total pendapatan tahunan dari ketiga investasi sebesar dan pendapatan dari investasi tabung lebih dari total pendapatan dua investasi lainnya. Tentukan besar modal untuk setiap investasi. Pembahasan Misalkan besar modal untuk investasi berupa tabungan, deposito, dan surat obligasi berturut-turut adalah $x, y$, dan $z$, dalam satuan jutaan rupiah. Jumlah modal yang dimiliki adalah Penulisan nominal uang ini kita singkat menjadi $420$. Diperoleh persamaan $\boxed{x + y + z = 420}$ Bentuk investasinya berupa tabungan dengan suku bunga $5\%$, deposito berjangka dengan suku bunga $7\%$, dan surat obligasi dengan pembayaran $9\%$, serta total pendapatan tahunannya $26$ juta rupiah. Secara matematis, ditulis $\dfrac{5}{100}x + \dfrac{7}{100}y + \dfrac{9}{100}z = 26$ dan disederhanakan menjadi $\boxed{5x + 7y + 9z = Diketahui juga bahwa pendapatan dari investasi tabung lebih dari total pendapatan dua investasi lainnya. Secara matematis, ditulis $\dfrac{5}{100}x = \dfrac{7}{100}y + \dfrac{9}{100}z-2$ dan disederhanakan menjadi $\boxed{5x-7y-9z = 200}$ Sekarang, kita memperoleh SPLTV $\begin{cases} x+y+z & = 420 && \cdots 1 \\ 5x+7y+9z & = && \cdots 2 \\ 5x-7y-9z & = 200 && \cdots 3 \end{cases}$ Eliminasi $y$ dan $z$ dari persamaan $2$ dan $3$. $\begin{aligned} \! \begin{aligned} 5x+7y+9z & = \\ 5x-7y-9z & = 200 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 10x & = \\ x & = 280 \end{aligned} \end{aligned}$ Substitusi $x = 280$ pada persamaan $1$. $\begin{aligned} \color{red}{x}+y+z & = 420 \\ \Rightarrow 280+y+z & = 420 \\ y & = 140-z && \cdots 4 \end{aligned}$ Substitusi persamaan $4$ pada persamaan $2$. $\begin{aligned} 5x+7y+9z & = \\ \Rightarrow 5280 + 7140-z + 9z & = \\ + 980-7z+9z & = \\ 2z & = 220 \\ z & = 110 \end{aligned}$ Ini berarti, $y = 140-\color{red}{110} = 30$. Jadi, besar modal untuk investasi berupa tabungan, deposito, dan surat obligasi berturut-turut adalah Rp280 juta rupiah, Rp30 juta rupiah, dan Rp110 juta rupiah. [collapse] Soal Nomor 6 Sebuah toko mempunyai persediaan air mineral dalam kemasan botol kecil, sedang, dan besar. Volume $2$ botol kecil dan $3$ botol sedang adalah $ ml. Volume $3$ botol kecil dan $4$ botol besar adalah $ ml. Volume $2$ botol sedang dan $3$ botol besar adalah $ ml. Tentukan volume setiap jenis botol air mineral tersebut. Pembahasan Misalkan $x, y, z$ berturut-turut menyatakan volume $1$ botol kecil, botol sedang, dan botol besar. Volume $2$ botol kecil dan $3$ botol sedang adalah $ ml. Secara matematis, ditulis $\boxed{2x + 3y = Volume $3$ botol kecil dan $4$ botol besar adalah $ ml. Secara matematis, ditulis $\boxed{3x + 4z = Volume $2$ botol sedang dan $3$ botol besar adalah $ ml. Secara matematis, ditulis $\boxed{2y + 3z = Dengan demikian, diperoleh SPLTV $\begin{cases} 2x + 3y & = && \cdots 1 \\ 3x + 4z & = && \cdots 2 \\ 2y + 3z & = && \cdots 3 \end{cases}$ Eliminasi $x$ dari persamaan $1$ dan $2$. $$\begin{aligned} \! \begin{aligned} 2x+3y & = \\ 3x + 4z & = \end{aligned} \left \! \begin{aligned} \times 3 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~6x+9y & = \\ 6x + 8z & = \end{aligned} \\ & \rule{4 cm}{ – \\ & \! \begin{aligned} 9y-8z & = && \cdots 4 \end{aligned} \end{aligned}$$Eliminasi $y$ dari persamaan $3$ dan $4$. $$\begin{aligned} \! \begin{aligned} 2y + 3z & = \\ 9y-8z & = \end{aligned} \left \! \begin{aligned} \times 9 \\ \times 2 \end{aligned} \right & \! \begin{aligned}~18y + 27z & = \\ 18y-16z & = \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} 43z & = \\ z & = \end{aligned} \end{aligned}$$Substitusi $\color{red}{z = pada persamaan $2$. $\begin{aligned} 3x + 4\color{red}{z} & = \\ 3x + 4 & = \\ 3x + & = \\ 3x & = \\ x & = 600 \end{aligned}$ Substitusi $\color{blue}{x = 600}$ pada persamaan $1$. $\begin{aligned} 2\color{blue}{x} + 3y & = \\ 2600 + 3y & = \\ + 3y & = \\ 3y & = \\ y & = 750 \end{aligned}$ Jadi, volume botol kecil $600$ ml, botol sedang $750$ ml, dan botol besar $ ml. [collapse] Soal Nomor 7 Sebuah batang logam terisolasi dengan suhu pada masing-masing titik ditunjukkan oleh $t_1, t_2$, dan $t_3$ seperti tampak pada gambar. Jika suhu pada titik-titik yang ditunjuk sama dengan rataan dua suhu di titik terdekat, tentukan a. SPL dalam variabel $t_1, t_2$, dan $t_3$; b. suhu pada $t_1$. Pembahasan Jawaban a Berdasarkan konsep rataan, diperoleh persamaan-persamaan berikut. $$\begin{aligned} t_1 & = \dfrac{100 + t_2}{2} \\ t_2 & = \dfrac{t_1+t_3}{2} \\ t_3 & = \dfrac{t_2 + 50}{2} \end{aligned}$$Bentuklah persamaannya sehingga diperoleh bentuk umum SPLTV. $$\begin{cases} 2t_1-t_2 & = 100 && \cdots 1 \\ t_1-2t_2+t_3 & = 0 && \cdots 2 \\ t_2-2t_3 & = -50 && \cdots 3 \end{cases}$$Jawaban b Perhatikan kembali SPL di atas. Persamaan $2$ ekuivalen dengan $2t_1-4t_2+2t_3 = 0$. Dari persamaan $2$ dan $3$, gunakan metode eliminasi untuk mendapatkan persamaan baru. $$\begin{aligned} \! \begin{aligned}2t_1-4t_2+2t_3 & = 0 \\ t_2-2t_3 & = -50 \end{aligned} \\ \rule{ cm}{ + \\ 2t_1-3t_2 = -50~~~~~& \cdots 4 \end{aligned}$$Selanjutnya, dari persamaan $1$ dan $4$, akan diperoleh $t_1$. $$\begin{aligned} \! \begin{aligned} 2t_1-3t_2 & = -50 \\ 2t_1-t_2 & = 100 \end{aligned} \left \! \begin{aligned} \times 1 \\ \times 3 \end{aligned} \right & \! \begin{aligned}~2t_1-3t_2 & = -50 \\ 6t_1-3t_2 & = 300 \end{aligned} \\ & \rule{ cm}{ – \\ & \! \begin{aligned} -4t_1 & = -350 \\ t_1 & = 87,5 \end{aligned} \end{aligned}$$Jadi, suhu pada $t_1$ adalah $\boxed{87,5^\circ\text{C}}$ [collapse] Soal Nomor 8 Panjang, lebar, dan tinggi sebuah balok berturut-turut adalah $a$ cm, $b$ cm, dan $c$ cm. Keliling alas balok $76$ cm, keliling sisi tegak depan $80$ cm, dan keliling sisi samping kanan $68$ cm. Tentukan volume balok tersebut. Pembahasan Perhatikan sketsa gambar balok berikut. Sisi pada balok berbentuk persegi panjang. Diketahui keliling alas balok $76$ cm sehingga $\boxed{2a + b = 76 \Leftrightarrow a + b = 38}$ Diketahui keliling sisi tegak depan balok $80$ cm sehingga $\boxed{2a + c = 80 \Leftrightarrow a + c = 40}$ Diketahui keliling sisi samping kanan balok $68$ cm sehingga $\boxed{2b + c = 68 \Leftrightarrow b + c = 34}$ Dengan demikian, diperoleh SPLTV $\begin{cases} a+b & = 38 && \cdots 1 \\ a + c & = 40 && \cdots 2 \\ b + c & = 34 && \cdots 3 \end{cases}$ Eliminasi $a$ dari persamaan $1$ dan $2$. $\begin{aligned} \! \begin{aligned} a+b & = 38 \\ a+c & = 40 \end{aligned} \\ \rule{2 cm}{ – \\ b-c = -2~~&\cdots 4 \end{aligned}$ Eliminasi $c$ dari persamaan $3$ dan $4$. $\begin{aligned} \! \begin{aligned} b+c & = 34 \\ b-c & = -2 \end{aligned} \\ \rule{ cm}{ + \\ \! \begin{aligned} 2b & = 32 \\ b & = 16 \end{aligned} \end{aligned}$ Substitusi $\color{red}{b=16}$ pada persamaan $3$. $\begin{aligned} \color{red}{b} + c & = 34 \\ \Rightarrow 16+c & = 34 \\ c & = 18 \end{aligned}$ Substitusi $\color{red}{b=16}$ pada persamaan $1$. $\begin{aligned} a + \color{red}{b} & = 38 \\ \Rightarrow a+16 & = 38 \\ a & = 22 \end{aligned}$ Volume balok dapat dihitung dengan mengalikan panjang, lebar, dan tingginya. $$\boxed{V = abc = 22 \times 16 \times 18 = [collapse] Soal Nomor 9 Tiga tukang cat bernama Joni, Deni, dan Ari biasanya bekerja secara bersama-sama. Mereka dapat mengecat eksterior bagian luar sebuah rumah dalam waktu $10$ jam kerja. Deni dan Ari pernah bersama-sama mengecat rumah yang serupa dalam waktu $15$ jam kerja. Suatu hari, ketiga tukang cat ini bekerja mengecat rumah serupa selama $4$ jam kerja. Setelah itu, Ari pergi karena ada keperluan mendadak. Joni dan Doni memerlukan tambahan waktu $8$ jam kerja lagi untuk menyelesaikan pengecatan rumah. Tentukan waktu yang dibutuhkan masing-masing tukang cat jika masing-masing bekerja sendirian. Pembahasan Misalkan $x, y, z$ berturut-turut menyatakan lamanya waktu dalam satuan jam kerja yang dibutuhkan Joni, Deni, dan Ari untuk menyelesaikan pengecatan rumah bila dikerjakan sendiri-sendiri. Mereka bertiga dapat menyelesaikan pengecatan bagian eksterior rumah selama $10$ jam kerja sehingga kita tulis $\boxed{\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} = \dfrac{1}{10}}$ Deni dan Ari pernah bersama-sama mengecat rumah yang serupa dalam waktu 15 jam kerja. Secara matematis, kita tulis $\boxed{\dfrac{1}{y} + \dfrac{1}{z} = \dfrac{1}{15}}$ Suatu hari, ketiga tukang cat ini bekerja mengecat rumah serupa selama $4$ jam kerja masih ada waktu $6$ jam atau $60\%$ untuk menyelesaikan pengecatan. Setelah itu, Ari pergi karena ada keperluan mendadak. Joni dan Doni memerlukan tambahan waktu $8$ jam kerja lagi sisa pengecatannya masih $60\%$ untuk menyelesaikan pengecatan rumah. Apabila Joni dan Doni dianggap mengerjakan $100\%$ pengecatannya, maka lama waktu yang dibutuhkan adalah $\dfrac{100}{60} \times 8 = \dfrac{40}{3}~\text{jam}.$ Dengan demikian, diperoleh persamaan $\boxed{\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{\frac{40}{3}} = \dfrac{3}{40}}$ Sekarang, kita telah memperoleh SPLTV $\begin{cases} \dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z} & = \dfrac{1}{10} && \cdots 1 \\ \dfrac{1}{y} + \dfrac{1}{z} & = \dfrac{1}{15} && \cdots 2 \\ \dfrac{1}{x} + \dfrac{1}{y} & = \dfrac{3}{40} && \cdots 3 \end{cases}$ Substitusi persamaan $2$ pada persamaan $1$. $\begin{aligned} \dfrac{1}{x} + \color{red}{\dfrac{1}{y} + \dfrac{1}{z}} & = \dfrac{1}{10} \\ \dfrac{1}{x} + \dfrac{1}{15} & = \dfrac{1}{10} \\ \dfrac{1}{x} & = \dfrac{1}{10}-\dfrac{1}{15} = \dfrac{1}{30} \\ x & = 30 \end{aligned}$ Substitusi persamaan $3$ pada persamaan $1$. $\begin{aligned} \color{red}{\dfrac{1}{x} + \dfrac{1}{y}} + \dfrac{1}{z} & = \dfrac{1}{10} \\ \dfrac{3}{40} + \dfrac{1}{z} & = \dfrac{1}{10} \\ \dfrac{1}{z} & = \dfrac{1}{10}-\dfrac{3}{40} = \dfrac{1}{40} \\ z & = 40 \end{aligned}$ Selanjutnya, substitusi $z = 40$ pada persamaan $2$. $\begin{aligned} \dfrac{1}{y} + \color{red}{\dfrac{1}{z}} & = \dfrac{1}{15} \\ \dfrac{1}{y} + \dfrac{1}{40} & = \dfrac{1}{15} \\ \dfrac{1}{y} & = \dfrac{1}{15}-\dfrac{1}{40} = \dfrac{5}{120} \\ y & = \dfrac{120}{5} = 24 \end{aligned}$ Jadi, waktu yang dibutuhkan Joni, Deni, dan Ari jika masing-masing bekerja sendirian berturut-turut adalah $30$ jam, $24$ jam, dan $40$ jam. [collapse]
Sistempersamaan linear satu variabel adalah bentuk persamaan yang terdiri dari satu variabel (peubah) dalam sistem linear untuk mengubah suatu d. Yang merupakan suatu persamaan linear satu variabel (plsv). Source: caraharian.com. Bentuk umumnya adalah {a1x + b1y + c1z = 0 {a2x demikian pembahasan materi kita kali ini mengenai contoh soal KumpulanSoal Cerita dan Pembahasan Sistem Persamaan Linear Dua Variabel (SPLDV) Written By Ilmuku Duniaku Tuesday, 3 July 2018 A. Pengertian Sistem Persamaan Linear Dua Variabel (SPLDV) Persamaan linear dua variabel adalah suatu persamaan yang variabelnya berpangkat (berderajat) paling tinggi satu dan mempunyai dua variabel yakni variabel x dan y.

Contohsoal cerita pertidaksamaan linear satu variabel (ptlsv) jumlah 2 (dua) bilangan tidak lebih dari 120, jika bilangan kedua bernilai 10 lebihnya dari bilangan yang pertama, maka tentukan batas nilai bilangan pertama. Jika umur budi lebih dari umur iwan, maka tentukan nilai $ x $. Source: contohsoalterbaik.blogspot.com

.
  • 7algz7h3tl.pages.dev/561
  • 7algz7h3tl.pages.dev/83
  • 7algz7h3tl.pages.dev/113
  • 7algz7h3tl.pages.dev/142
  • 7algz7h3tl.pages.dev/458
  • 7algz7h3tl.pages.dev/474
  • 7algz7h3tl.pages.dev/232
  • 7algz7h3tl.pages.dev/227
  • 7algz7h3tl.pages.dev/297
  • 7algz7h3tl.pages.dev/58
  • 7algz7h3tl.pages.dev/750
  • 7algz7h3tl.pages.dev/480
  • 7algz7h3tl.pages.dev/33
  • 7algz7h3tl.pages.dev/746
  • 7algz7h3tl.pages.dev/278
  • soal cerita persamaan linear satu variabel